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Abstract
Predicting the results of sport matches and competitions is a growing research field, benefiting from the increas-
ing amount of available data and novel data analytics techniques. Excellent forecasts can be achieved by
advanced statistical and machine learning methods applied to detailed historical data, especially in very popular
sports such as football (soccer). Here, we show that despite the large number of confounding factors, the results
of a football team in longer competitions (e.g., a national league) follow a basically linear trend that is also useful
for predictive purposes. In support of this claim, we present a set of experiments of linear regression compared to
alternative approaches on a database collecting the yearly results of 746 teams playing in 22 divisions spanning
up to five different levels from 11 countries, in 25 football seasons, for a total of 181,160 matches grouped in 9386
seasonal time series.
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Introduction
Predicting sport results in the last few years has
ceased being just an art for initiated specialists1 to
enter the realm of data analytics, thus providing a
further support to the claim of considering as science
many aspects of several sports.2–4 In particular, inter-
est in forecasting the results of sporting competitions
has grown in the last few years, essentially because of
two key factors: the arising need for more reliable
predictive models by betting agencies5–10 and the in-
creasing number of available sources collecting data
at different levels of detail. However, the predictabil-
ity of results is still a debated issue,11–15 mainly be-
cause of the random effects affecting the outcome
of a match, with football (soccer) as a major exam-
ple.16–21 Clearly, structural effects have an even larger
impact: as noted by Parasich,22 the average precision
(53%) reached by bookmakers in forecasting the out-
come of a match (home win, draw, away win) seems
not so positive anymore if you consider that the home
team wins 46% of matches, and thus the null constant
model always predicting a home win achieves 46%
precision.

Many algorithms from statistics* and machine
learning have recently been used to overcome such
randomness bias in order to achieve good predictive
performance, which have been applied to data catch-
ing diverse aspects of the game, with different histor-
ical spans, or at various levels of detail, even publicly
available online as infotainment resources.{ General-
ized linear or polynomial models and logistic or probit
regressions have been used in the literature since the
mid-2000s,9,15,23–31 using as variables points or goals
or even adding economic parameters. More recent are
statistical approaches based on Bayesian or Poissonian
predictors,10,21,32–43 or even Weibull counts,44,45 where
individual player’s performance is also included as a
model covariate. Further statistical approaches involv-
ing for instance Markov chain Monte Carol, hierarchical
models, or moving averages have been published,8,46–52

indicating that a shared agreement on a grounded mod-
eling is still far from being acknowledged. More recently,
machine learning models have become a major trend
in the field, and all the best-known algorithms have
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appeared on the football forecasting arena (e.g., nearest
neighbours, Gaussian and Poisson processes, Random
Forest, Support Vector Machines, MultiLayer Percep-
tron just to name a few53–64) to even deep learning
approaches.65–67 Finally, complex networks strategies
based on team structure68–71 can provide complemen-
tary insights on the game not covered by more classi-
cal methodologies, aiming for instance at ranking
teams72 or at assessing players’ rating and success.73,74

In general, when powerful learning methods and/or a
substantial wealth of training data are used—and so-
cial network data are playing an increasingly crucial
role32,33,75,76—the predictive accuracy that can be reached
is excellent, and the occurring randomness is effectively
dealt with.

In this article, we want to demonstrate that despite
the existing randomness and other confounding factors,
there are situations where sporting results are driven by
very simple (e.g., linear) trends, and these trends can be
captured by basic techniques and a limited amount of
training data. In detail, the philosophy driving the re-
search is the ambition of filling a gap in the literature
of the predictive models in soccer. In fact, very little
can be found about simple baselines derived by analyzing
a restricted number of fundamental features. In particu-
lar, there is no reference method evaluating the dynamics
of earned points throughout a season by only using the
time series of points itself: this is the niche where this ar-
ticle positions itself, also showing that the dynamics is
fundamentally linear, and establishing at the same time
a base reference for more complex models.

As in Rue and Salvesen,51 we focus on a longer com-
petition such as a national league, and we show the out-
come of forecasting the last part of a season by using
only the results of the initial portion of the campaign
(in Heuer and Rubner,26 the authors restrict their at-
tention to the last 17 matches of the season). Here,
we restrict our analysis to national football (soccer)
championships and the simplest possible (predictive)
statistical technique (i.e., linear regression as in God-
dard25 and Rocha et al.30), also compared to polynomial,
autoregressive integrated moving average (ARIMA),77

and exponential smoothing state space models.78 We
also compare to models from the Pythagorean Expect-
ation family,79 a class of algorithms that have gained in-
terest in the last few years in various team sports,
originating from the Pythagorean Theorem of Baseball
by James80 and later improved. Goals for and goals
against are used as point predictors, with parameters
fitted using a Weibull distribution. Note that linear re-

gression has already been used to forecast future league
points, using as predictors some economic indicators
such as turnover, profit/loss before tax, net debt, inter-
est owed on any debt, and the club’s wage bill.24 In par-
ticular, we want to assess to what extent such a simple
approach used only on the current season results, with-
out any historical data, can be effectively used to predict
the behaviour of a team in the final portion of a tour-
nament in terms of both the total number of earned
points and the final ranking in the championship table.

Analysis
Data description
Data were extracted from the Football-Data repository,81

and they include the results of all matches for 513
European national championships over the 25-year
range 1993/94–2017/18. In detail, data for 22 divi-
sions of 11 countries at five different levels are studied,
giving a total of 9386 series for 746 unique teams.
Championships grouped by league and country are
shown in Figure 1.

For our purposes, all 9386 time series are described
by the independent variable rounds and by the depen-
dent variable points, keeping track of the accumulated
points gained by a team during the rounds of a season-
long campaign, as shown in Figure 2.

Methods
All models were computed in the R environment82

using the packages stats for linear/quadratic/cubic
and stats for the ARIMA and the exponential smooth-
ing state space (ETS) models. Confidence intervals
were computed via the Student’s bootstrap proce-
dure83,84 using the version described in Davison and
Hinkley85 and implemented in the boot.ci function of
the boot R package.

In detail, let T be a team participating in a league
whose season consists of n rounds, and let Ti be the
number of points earned by T after the ith round, so
that Tn is the total number of points at the end of sea-
son. Let ts be an integer between 1 and n� 1, and let Lts

T
be a model trained on (1, T1), . . . , (n� ts, Tn� ts ). Define
�Tn = ºLts

T(n)ß as the estimated number of total points
earned by T as the largest integer smaller than the extrap-
olation of Lts

T computed on the point n. In Figure 3, an
example is shown of the linear modeling of Schalke 04
season in the Bundesliga 2013/14, where the final num-
ber of earned points is predicted for ts = 10.

Finally, quantitative comparison between tournament
standings (predicted and actual) is computed by mean of
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Spearman’s rank correlation coefficient q86 and by the
total absolute displacement d,87 defined as the normal-
ized sum of the differences between rankings (see
Appendix A for mathematical details and examples
on the metric d).

Results
In what follows, we will estimate the total number of
points earned by a team by mean of a linear model

trained on the first n� ts matches of the seasons, for
several values of ts, for n the total number of matches
in the season. Furthermore, we will derive, for each
championship, the estimated final league table to be
compared to the actual standing.

Simulations
As a synthetic benchmark, 104 series are randomly gen-
erated with n = 38, Ti = Ti� 1þ n with T0 = 0, and n

FIG. 1. Distribution of the 9386 time series in the database by nation and division. Color images are available
online.
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FIG. 2. Time series of the points earned by Juventus FC (black), AS Roma (red), and Internazionale FC (blue)
during the 2014/15 Serie A campaign. The x-axis shows the 38 matchdays, and the y-axis shows the
accumulated points. Color images are available online.

FIG. 3. Points earned by Schalke 04 in the Bundesliga 2013/14 season (T, black square) and their
approximation (circles) through a linear model (gray line) trained on the first 24 rounds (blue filled circles) and
extrapolated on the last 10 rounds (P, white and red circles), highlighted in the yellow box. In the bottom-right
yellow table, the comparison between the real points (T) and the predicted points (P) on the last 10 rounds.
Color images are available online.
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equal to 0, 1, or 3 with a probability of 1/3. Then
�Tn = ºLts

T(n)ß is computed together with CI for L the lin-
ear, the quadratic, the cubic, the ARIMA, or the ETS
model, for ts = 1, . . . , 19. Both the ARIMA and the
ETS models are automatically optimized by the default
R call, and the results are reported in Table 1. The
ARIMA model is consistently the best, but the linear
model represents a solid and simpler alternative not
needing any optimization, while the quadratic and
the cubic models have poor performances, especially
when the training set becomes smaller: when estimat-
ing the final number of points using the first 28 rounds
(out of 38), the linear, ARIMA, and ETS models show
an average error of 4 points, while the quadratic and

the cubic models have an error of 7 and 14 points, re-
spectively. Thus, the linear trend is a good approxima-
tion of the null model with random results. The critical
feature that supports the fair performance of the linear
model in the longitudinal data of teams’ yearly campa-
ings is the fact that the successive increments n are non-
negative and small. In fact, allowing n to take larger
values quickly worsens the fit of the linear model, as
shown from the three examples reported in Table 2.
The above experiment was replicated with different
sets of values for n, namely f0, 1, 6g, f0, 1, 3, 6g, and
f0, 1, 2, 3, 4, 5g, and in all threee cases the average
error of the linear model was larger than the one result-
ing from the true setting f0, 1, 3g.

Table 1. Prediction error of the linear (L), quadratic (Q), cubic (C), ARIMA (A), and ETS (E) models on 104 simulated time series
on n = 38 rounds

n – ts Ll Lm Lu Ql Qm Qu Cl Cm Cu

19 6.76 6.85 6.95 18.94 19.21 19.48 74.54 75.50 76.60
20 6.38 6.47 6.57 17.02 17.30 17.54 60.78 61.71 62.53
21 5.99 6.08 6.18 15.04 15.28 15.50 50.08 50.81 51.52
22 5.83 5.92 6.01 13.36 13.54 13.73 41.95 42.58 43.22
23 5.56 5.64 5.72 12.09 12.26 12.45 35.01 35.54 36.05
24 5.27 5.35 5.43 10.75 10.91 11.07 28.89 29.31 29.74
25 4.99 5.06 5.14 9.56 9.70 9.85 23.84 24.19 24.58
26 4.71 4.78 4.85 8.60 8.73 8.86 20.17 20.45 20.78
27 4.54 4.60 4.67 7.63 7.73 7.84 16.80 17.06 17.30
28 4.29 4.35 4.42 6.92 7.02 7.11 13.78 13.98 14.19
29 4.09 4.15 4.21 6.15 6.23 6.33 11.44 11.60 11.78
30 3.85 3.90 3.97 5.54 5.62 5.70 9.47 9.62 9.76
31 3.67 3.73 3.79 4.83 4.90 4.98 7.91 8.02 8.14
32 3.39 3.44 3.49 4.35 4.41 4.47 6.51 6.61 6.71
33 3.18 3.23 3.28 3.80 3.86 3.92 5.26 5.34 5.42
34 3.00 3.04 3.09 3.29 3.34 3.39 4.24 4.30 4.37
35 2.76 2.80 2.84 2.83 2.87 2.91 3.35 3.40 3.44
36 2.56 2.60 2.64 2.41 2.44 2.48 2.56 2.60 2.64
37 2.33 2.37 2.40 1.99 2.02 2.04 1.89 1.92 1.95

n – ts El Em Eu Al Am Au

19 8.34 8.48 8.62 6.80 6.91 7.03
20 7.91 8.03 8.16 6.20 6.30 6.40
21 7.23 7.34 7.47 5.83 5.92 6.01
22 6.79 6.90 7.01 5.53 5.62 5.70
23 6.43 6.54 6.64 5.26 5.35 5.43
24 5.98 6.08 6.18 5.00 5.07 5.15
25 5.48 5.57 5.66 4.64 4.71 4.78
26 5.11 5.20 5.29 4.31 4.37 4.45
27 4.77 4.84 4.92 4.08 4.14 4.21
28 4.41 4.48 4.55 3.81 3.86 3.92
29 4.00 4.06 4.13 3.55 3.60 3.66
30 3.71 3.76 3.82 3.28 3.33 3.38
31 3.33 3.38 3.43 3.02 3.06 3.11
32 3.00 3.04 3.09 2.76 2.80 2.84
33 2.60 2.64 2.69 2.43 2.46 2.50
34 2.29 2.32 2.35 2.15 2.18 2.21
35 1.91 1.94 1.97 1.82 1.85 1.88
36 1.54 1.56 1.59 1.49 1.51 1.53
37 1.10 1.11 1.13 1.08 1.09 1.11

For each model, the mean error (m) and the lower (l) and upper (l) Student’s bootstrap confidence intervals (CIs) are reported.
ARIMA, autoregressive integrated moving average; ETS, exponential smoothing state space.
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Team performance prediction
For the 9386 seasonal time series T, we estimate �Tn for
ts = 1, . . . , 20, with linear, quadratic, cubic, ARIMA,
and ETS models. As a comparative baseline, we also inter-
polate �Tn as Tn� s � n

n� s. In Table 3, we list the mean and
the confidence intervals for j�Tn�Tnj for the five models.

Results for the six models are all mutually statisti-
cally different, with p-values <10�16. While quadratic
and cubic models have very poor predictivity (with
the cubic model performing even worse than the inter-
polation baseline), linear, ETS, and ARIMA models
produce similar and better results, supporting the
claim of an overall linear trend in points evolution.
These results imply that overall, the seasonal trend is
not linear, since the nonlinear ARIMA model fits better
(and Pearson’s correlation between the ARIMA and
linear models is 0.76), but the simpler linear model rep-
resents a valid approximation. In Figure 4, we show two
cases (both in Dutch Eredivisie) where the nonlinearity

instead is particularly evident, namely AZ Alkmaar in
2004/05 and Nijmegen in 2007/08. In both cases, the
trend for the last part of the season is very different
from the initial part.

In what follows, as a representative case, we set ts = 10,
that is, for each series, we use all the rounds except for
the last 10 as the training set, and we predict the final
figure of earned points. Overall, when ts = 10, the aver-
age prediction error of the final number of points is
4.43 for the linear model, 3.93 for the ARIMA model,
and 4.62 for the ETS model, but the boxplots for the
three models almost overlap, as shown in Figure 5. In
this case, the average prediction error for the interpola-
tion baseline model is 14.24, with a confidence interval
of 14.07–14.40. Consistency of the results with those
obtained in the general situation indicates that choosing
ts = 10 as the representative case is a meaningful choice
(the full linear prediction results for all teams, leagues,
and seasons can be found in the Supplementary Data).

We also add here the comparison with algorithms
from a well-known family of algorithms, variants of
the original Pythagorean Expectation (PE) method, orig-
inally developed for baseball in James,80 recently adapted
for football by Hamilton 79 and then further optimized
by several authors.88–91 The basic PE model has the form

earned points =
GFc1

GFc2 þGAc3
� k � #rounds ,

and thus is different from the other model, since it is
not a model for the dynamics of the time series of

Table 2. Prediction error of the linear model on 104 simulated time series on n = 38 rounds for different sets of values of n

n ˛{0,1,6} n ˛{0,3,6} n ˛{0,1,2,3,4,5}

n – ts l m u l m u l m u

19 14.06 14.25 14.47 12.25 12.44 12.62 9.21 9.36 9.50
20 13.41 13.60 13.82 11.75 11.93 12.12 8.80 8.94 9.06
21 12.85 13.04 13.23 11.05 11.21 11.37 8.29 8.42 8.55
22 12.03 12.19 12.37 10.52 10.67 10.83 8.01 8.13 8.25
23 11.56 11.74 11.91 10.09 10.23 10.38 7.59 7.70 7.81
24 11.04 11.19 11.36 9.69 9.83 9.97 7.21 7.32 7.43
25 10.65 10.80 10.97 9.20 9.34 9.47 6.80 6.90 7.02
26 10.08 10.22 10.38 8.71 8.84 8.98 6.42 6.51 6.60
27 9.57 9.70 9.86 8.29 8.41 8.53 6.17 6.26 6.35
28 8.95 9.09 9.23 7.86 7.97 8.08 5.82 5.91 6.00
29 8.46 8.59 8.73 7.53 7.64 7.75 5.55 5.63 5.71
30 8.14 8.27 8.39 7.18 7.28 7.38 5.31 5.39 5.47
31 7.62 7.75 7.86 6.70 6.81 6.90 4.94 5.01 5.09
32 7.24 7.34 7.45 6.27 6.36 6.44 4.63 4.70 4.77
33 6.73 6.84 6.96 5.91 6.00 6.09 4.38 4.45 4.52
34 6.31 6.40 6.49 5.48 5.56 5.64 4.11 4.18 4.24
35 5.79 5.87 5.95 5.09 5.17 5.24 3.78 3.84 3.90
36 5.34 5.42 5.50 4.66 4.73 4.80 3.51 3.56 3.61
37 4.89 4.96 5.03 4.24 4.30 4.37 3.16 3.20 3.25

For each model the mean error (m) and the lower (l) and upper (l) Student’s bootstrap CIs are reported.

Table 3. Mean and bootstrap CIs of j�Tn� Tnj
for the linear, quadratic, cubic, ARIMA,
and ETS models and the interpolation baseline

Model Lower CI j�T n � Tnj Upper CI

Linear 4.55 4.57 4.59
Quadratic 8.15 8.19 8.23
Cubic 22.10 22.25 22.40
ARIMA 3.99 4.01 4.03
ETS 4.82 4.85 4.87
Baseline 13.29 13.37 13.45
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gained points. In the original article,79 c1 = c2 = c3 were
estimated on the available data by a Weibull distribu-
tion and k = 1, while the following variants have differ-
ent values for the three c parameters and k is >1 to
account for ties and 3-point wins. In what follows, we
tried several different sets of parameters, and we report
the results for the best performing values c1 = 1:5,
c2 = 1:08, c3 = 1:13, and k = 2:31. Although all these
models are known to achieve reasonably good diagnos-
tic results across different leagues and seasons in mod-
eling the team’s points, they do not perform similarly
well in prediction: for ts = 10, the average prediction
error of the final number of points is 6.93.

Consider the (linear) predictivity (j�Tn�Tnj for ts = 10)
of the set S of 258 teams that are present for ‡20/25 sea-
sons in the available data. Figure 6 shows the histogram

of the average differences between prediction and actual
values. The set of values j�Tn�Tnj for S is Gaussian-like,
with a range of 3.00–6.33 (min and max corresponding
to Lorient and Dundee Utd., respectively) and a mean
and median of approximately 4.4. Smaller values indi-
cate more linear behavior of a team throughout all the
considered seasons, while larger values mark the pres-
ence of one or more seasons where the sequence of re-
sults had a nonlinear trend. On the same task, again
the PE algorithm has poorer performances, with an av-
erage error 7.39. In Table 4, the values j�Tn�Tnj are
listed for the top10 Union of European Football Associ-
ations ranking teams (current standing at June 2018).
Among a number of teams such as Bayern Munich,
Juventus, and Manchester City whose linear trend
is quite consistent through all the considered seasons

FIG. 4. Points earned by AZ Alkmaar in the Eredivisie 2004/05 season (red) and by Nijmegen in the 2007/08
season (blue). In both cases, there is a remarkably different trend between the initial and the final part of the
season, making both dynamics nonlinear. Color images are available online.

FIG. 5. Box and whisker plot of the distribution of absolute value of the prediction errors, for ts = 10, for the
whole set of 9386 time series, by the linear, autoregressive integrated moving average, and exponential
smoothing state space model.
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(j�Tn�Tnj < 4), Barcelona’s case emerges. Barcelo-
na’s high value j�Tn�Tnj= 5:76 is due to a number
of seasons (1993/94, 2002/03, 2005/06, 2003/04,
2007/08, 2008/09, and 2010/11) where the seasonal
trend was markedly nonlinear, mostly because the last
matches followed a very different pattern from the ini-
tial part of the season. As an example, consider the sit-
uation in the 2003/04 campaign shown in Figure 7. The
seasonal pattern is nonlinear, but it is piecewise linear,
with the first and second halves of the season following
two distinct linear approximations whose correspond-
ing slopes are 1.29 and 2.52, respectively, thus in ratio
almost 1:2. A similar situation happened to Juventus
in the 201516 season, when they collected 12 points
in the first 10 rounds, and 79 in the following 28 rounds.

Furthermore, differences between various countries
and leagues are small for every value of ts. As an exam-

ple, for ts = 10, the value of j�Tn�Tnj ranges between
4.19 for Portugal and 4.63 for The Netherlands, while
for leagues, the minimum 4.19 is reached by the Portu-
guese Primeira Liga and the maximum 4.63 by the
Dutch Eredivisie.

Finally, differences between teams ending in differ-
ent zones of the final standing are also small. For

ts = 10, the values (with confidence intervals) of
j�Tn�Tnj for all teams finishing first to fifth is 4.32
(4.19–4.46), for all teams filling the bottom five posi-
tions is 4.21 (4.07–4.35), while for the teams in the
five positions at the middle of the table the correspond-
ing values are slightly larger 4.54 (4.39–4.67) indicating
a less precise linear predictivity for these teams. This re-
flects the fact that a team whose dynamic throughout
the year is far from linear will hardly reach high or
low positions in the standing, which instead include
teams performing consistently good (or bad) during
the campaign.

We also applied the five models to another quantity
that is often used as a predictor: goal difference. Here,
the nonlinearity is far more evident, but the ARIMA
model also performs poorly. In the case ts = 10, the

FIG. 6. Histogram of j�T n� Tnj for the set S of 258 teams having more presences (‡20/25). Color images are
available online.

Table 4. j�Tn� Tnj for the top 10 Union of European Football
Associations ranking teams at November 2015 for ts = 10

Rank Team j�T n � Tnj Rank Team j�T n� Tnj

1 Real Madrid CF 4.48 6 Sevilla FC 4.24
2 Club Atlético

de Madrid
5.20 7 Paris Saint-Germain 4.72

3 FC Bayern München 3.72 8 Manchester City 3.68
4 FC Barcelona 5.76 9 Arsenal FC 4.28
5 Juventus 3.72 10 Borussia Dortmund 4.84

FIG. 7. Points earned by FC Barcelona (black
dots) in La Liga 2003/04 and the corresponding
linear models for the first (red line) and second
(blue line) halves of the season. Color images are
available online.
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confidence interval of the absolute prediction error is
5.86–6.06 for the linear model and 5.33–5.50 for the
ARIMA model.

Championship outcome prediction
Let us now consider predicting the final outcome not of
a single team but rather of an entire championship. As
a performance measure, we use the normalized total
absolute displacement d and Spearman’s rank correla-
tion q outlined in the Methods.

As a first result, in Figure 8 we plot, for each
1 � ts � 20, the distribution of the normalized total
absolute displacements d for the 511 championships
included in the considered data set. The 95% Student’s
bootstrap confidence intervals [l, u] are not reported in
Figure 8 because they are too narrow. For each ts, we
have [l, u] � [

�d
1:038 , 1:037�d]. As a function of ts, the

median of d is very close to �d (the ratio between the
mean and the median of d ranges between 0.988 and
1.057), and it has an almost linear trend significantly
smaller than the null model value � 2

3 even for large
values of ts. For example, for ts = 10, we have
�d = 0:1874 and �q = 0:879, which, for a tournament
with 20 teams, means that on average the linear

model can guess the final ranking of each team with
an error of 1.874 positions. In 25 cases (with ts � 7),
the actual final ranking was perfectly predicted by the
linear model. Note that for this task, the baseline
model using the standing at ts = 10 to predict the final
ranking trivially has a very good performance, achiev-
ing �d = 0:196 and �q = 0:814. The fact that predicting the
final ranking is an easier task than predicting the final
number of points is not unexpected, since ranking var-
iations in the last rounds of a championship are limited
because differences in points can become quite large,
even for teams that are close in the standing. This ob-
servation also explains the very good performance of
the baseline model, whose accuracy is far better than
the interpolating baseline for the point prediction task.

Moreover, even the best PE algorithm performs
worse than the linear model, achieving an average dis-
placement of �d = 0:264 and an average Spearman rank
correlation of �q = 0:741.

No significant difference in the table prediction per-
formance is also detected when comparing the top
leagues (Premier League, Serie A, Ligue 1, La Liga, Bun-
desliga, Eredivisie, and Primeira Liga) with all the other
considered leagues: �d for the former championships is

FIG. 8. Violin plot of normalized total absolute displacement d as a function of ts averaged over the 425
championships, with distribution (gray), median (red dots), and boxplot (inner black line). Color images are
available online.

LINEAR PREDICTIVITY IN FOOTBALL 29

D
ow

nl
oa

de
d 

by
 U

PP
SA

L
A

 U
N

IV
E

R
SI

T
E

T
SB

IB
L

IO
T

E
K

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
3/

19
/1

9.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



0.184 (0.175–0.192), while for the latter it is 0.189
(0.180–0.198; respectively �q = 0:889 (0:874, 0:900) and
�q = 0:879 (0:870, 0:886)).

A crucial task championship outcome prediction is
to forecast the final top and bottom of the table, that
is, the teams qualifying for European tournaments
(Champions League and Europa League) and the
teams facing relegation. Define the true positive rate
(TPR) as the fraction of championships (out of 425)
where all the teams finishing in top k (or bottom k) po-
sitions were correctly predicted by a linear model. In
Table 5, the TPR is shown for increasing ts = 1, . . . , 20,
for the first/last k = 3 and k = 6 positions. Overall, the
performance of the linear model is quite good for a
wide range of values of ts. For ts < 10, the TPR is
>0.9 for all cases. Moreover, predictions for k = 3 is
slightly noisier than k = 6, while in both cases predicting
the bottom of the table is slightly harder than guessing
the top teams. This is due to the fact that when the
amount of points is small, as happens in the relegation

zone, a single fluctuation (i.e., an unexpected win) can
perturb the whole bottom part of the standing with a
far larger impact than at the top.

Example: EPL 12/13
We conclude with a particularly favorable example
(English Premier League 2012/13 relegation zone)
where the linear model predictivity is better than the
more complex combinations of algorithm and human
knowledge, which translate into the odds offered by
betting services. In Table 6, the corresponding relega-
tion odds are reported for six betting agencies: (B1)
Betting Expert,92 (B2) bwin,6 (B3) Bet365,93 (B4) Lad-
brokes,94 (B5) SportBookReview,95 and (B6) William
Hill,96 together with the average odds. Although the
betting odds were suggesting Norwich and Southamp-
ton, for instance, as likely candidates (with 2.50 and
2.16 average odds), quite unexpectedly (average odds
4.95) Queen’s Park Rangers suffered relegation instead.
In this case, the linear model performs effectively,

Table 6. Relegation odds for six betting agencies for the English Premier League 2012/13

Team B1 B2 B3 B4 B5 B6 Mean

Norwich 2.60 1.75 1.50 1.50 6.00 1.63 2.50
QPR 7.20 4.50 5.00 4.00 4.00 5.00 4.95
Reading 2.70 1.00 1.10 1.10 4.00 1.10 1.83
Southampton 2.40 1.20 1.38 1.25 5.50 1.25 2.16
Swansea 3.10 2.00 2.25 2.00 9.00 1.75 3.35
West Bromwich Albion 4.40 3.50 3.50 3.33 3.33 4.50 3.76
West Ham 4.00 2.20 2.00 2.25 10.00 1.63 3.68
Wigan 2.80 1.75 1.5 1.63 6.00 1.64 2.55

Last column shows the average odds. The three relegated teams are shown in bold.
B1, Betting Expert92; B2, bwin6; B3, Bet36593; B4, Ladbrokes94; B5, SportBookReview95; B6, William Hill.96

Table 5. True positive rate of linear prediction of top/bottom k (Tk,Bk) teams for k = 3 and k = 6

tk T3 % B3 % T6 % B6 %

1 422 0.992 414 0.974 425 1.000 422 0.993
2 421 0.991 411 0.967 425 1.000 422 0.993
3 420 0.988 410 0.965 425 1.000 422 0.993
4 418 0.984 403 0.948 425 1.000 421 0.991
5 417 0.981 402 0.946 425 1.000 420 0.988
6 416 0.979 401 0.944 425 1.000 420 0.988
7 413 0.972 396 0.932 425 1.000 420 0.988
8 412 0.969 390 0.918 425 1.000 418 0.984
9 409 0.962 383 0.901 425 1.000 415 0.976

10 405 0.953 379 0.892 425 1.000 413 0.972
11 403 0.948 373 0.878 425 1.000 411 0.967
12 401 0.944 374 0.880 424 0.998 411 0.967
13 396 0.932 370 0.871 424 0.998 409 0.962
14 396 0.932 363 0.854 424 0.998 405 0.953
15 392 0.922 356 0.838 424 0.998 406 0.955
16 384 0.904 351 0.826 423 0.995 406 0.955
17 383 0.901 347 0.816 422 0.993 403 0.948
18 375 0.882 345 0.812 419 0.986 401 0.944
19 368 0.866 338 0.795 418 0.984 402 0.946
20 363 0.854 332 0.781 415 0.976 398 0.936
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consistently predicting QPR, Reading, and Wigan as
the relegated teams, for each ts = 1, . . . , 20.

Conclusions
A high level of linearity may be unexpected when
dealing with football results, where a large number
of confounding factors influence the outcome of
both a single match and an entire tournament. Here,
we show that when considering long tournaments
such as national championships, linear trends are
quite widespread, and linear models can also work
as effective predictors. Although more refined predic-
tors such as ARIMA or ETS have a better fit, the linear
model indeed represents a consistent compromise be-
tween performance and simplicity. In particular, we
tested the linear forecast of the total number of earned
points by a team during a season, and the final team
ranking in the table, where the model is trained only
on the initial portion of the season. In both cases,
we demonstrate that even such a minimalist approach
and without using historical data can achieve good
predictive performances.
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Abbreviations Used
ARIMA ¼ autoregressive integrated moving average

ETS ¼ exponential smoothing state space
PE ¼ Pythagorean Expectation

TPR ¼ true positive rate

Appendix A: The Displacement Metric
Let T = fz1, . . . , zng be the teams involved in a given
tournament. Consider now the standing S after a cer-
tain matchday of the tournament, that is, the ranked
list S = [za1 , . . . :zan] for fa1, . . . , ang = f1, . . . , ng. Let
rkS be the ranking map, that is, the function associating
to each team zi its position inside the standing S, and
define sS = (rkS(z1), rkS(z2), . . . , rkS(zn)). Then, sS is a
permutation of the first n natural numbers, that is, a

member of the symmetric group Sn. Thus, to each
one of all possible n! standings, S is biunivocally asso-
ciated with a permutation sS. Given two standings R, S
on T , we define the distance D between R and S as the
total absolute displacement between sR and sS:

D(R, S) =
Xn

i = 1

jrkR(zi)� rkS(zi)j =
Xn

i = 1

jsR(i)� sS(i)j :

In order to compare meaningfully distances computed
in tournaments with different numbers of competing
teams, D is normalized by its maximum value, as in
Mitchell87:

max
sS, sR2Sn

D(R, S) = max
sR2Sn

D(Id, R)

= max
sR2Sn

Pn

i = 1
ji� sR(i)j

= ºn2

2 ß ,

where Id is the identical permutation. We can thus de-
fine the normalized distance d as follows:

d(R, S) =
D(R, S)

max
sS , sR2Sn

D(R, S)
=

D(R, S)

ºn2

2 ß
=

Pn

i = 1
jsR(i)� sS(i)j

ºn2

2 ß

Furthermore, computing the expected value of d over
the whole permutation group Sn allows the compari-
son of a given value of the normalized distance with

Table A1. Set T of teams playing in Italian Serie A 2014/15

Index Team name Index Team name

z1 Atalanta z11 Lazio
z2 Cagliari z12 Milan
z3 Cesena z13 Napoli
z4 Chievo z14 Palermo
z5 Empoli z15 Parma
z6 Fiorentina z16 Roma
z7 Genoa z17 Sampdoria
z8 Hellas z18 Sassuolo
z9 Inter z19 Torino
z10 Juventus z20 Udinese

Table A2. Actual (A) and predicted (P) table of Serie A
2014/15 after matchday 20

Pos. A P T Team sA sP jsA � sPj

1 Juventus Juventus z1 Atalanta 15 14 1
2 Roma Roma z2 Cagliari 17 18 1
3 Napoli Lazio z3 Cesena 19 19 0
4 Lazio Napoli z4 Chievo 18 16 2
5 Sampdoria Genoa z5 Empoli 16 13 3
6 Fiorentina Milan z6 Fiorentina 6 8 2
7 Genoa Sampdoria z7 Genoa 7 5 2
8 Palermo Fiorentina z8 Hellas 14 12 2
9 Udinese Inter z9 Inter 11 9 2

10 Milan Udinese z10 Juventus 1 1 0
11 Inter Torino z11 Lazio 4 3 1
12 Sassuolo Hellas z12 Milan 10 6 4
13 Torino Empoli z13 Napoli 3 4 1
14 Hellas Atalanta z14 Palermo 8 15 7
15 Atalanta Palermo z15 Parma 20 20 0
16 Empoli Chievo z16 Roma 2 2 0
17 Cagliari Sassuolo z17 Sampdoria 5 7 2
18 Chievo Cagliari z18 Sassuolo 12 17 5
19 Cesena Cesena z19 Torino 13 11 2
20 Parma Parma z20 Udinese 9 10 1

D(A, P) = +20
i = 1jsA(i)� sP(i)j = 38.

In the last column, the absolute displacement jsA � sPj is reported be-
tween A and P for the corresponding team zi, and its total is indicated in
the last row. The corresponding permutations sA and sP are computed
with respect to the set of teams T.
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the null hypothesis of the distance with a random
standing:

ESn (d) =
1
jSnj

X

s2Sn

d(Id, s)

=
1
n!

1

º n2

2 ß

X

s2Sn

Xn

i = 1

ji� s(i)j

=
1
n!

1

º n2

2 ß

Xn

i = 1

X

s2Sn

ji� s(i)j

=
1
n!

1

º n2

2 ß
2
Xn

i = 1

Xn

j = 0

(n� 1)!j

= 2
(n� 1)!

n!

1

º n2

2 ß

Xn

i = 1

(i� n� 1)(i� n)

2

=
1
n

1

º n2

2 ß
(n� 1)n(nþ 1)

3

=
n2� 1

3º n2

2 ß

=
2
3
� 2

3n2
� (n mod 2) ,

which is 2
3 for odd n’s and 2

3 � en for even n’s, with en

positive, decreasing to 0 and smaller than 0:0�6 for
n � 10. Thus, regardless of the number of playing
teams, the distance d between two standings in the
same championship is a number ranging between 0
(for identical rankings) and 1 (for maximally different
standings), with d � 2

3 for randomly chosen standings.
Hereafter, we show an example of the use and the inter-
pretation of the distance d.

Example
Suppose we want to assess the error of a predictive algo-
rithm P in forecasting the standing of a tournament
after a given matchday, using metric d as the evaluation
measure. In particular, we test P in two situations:
(1) round 20 of Italian Serie A 2014/15 and (2) the
final round (18) of the South American qualifiers for
the 2010 FIFA World Cup.

(1) Italian Serie A 2014/15 involved 20 teams, com-
posing the set T as shown in Table A1. The initial

assignment of the zi labels with the team is arbitrary,
and any other choice would work instead.

After round 20, the table, labeled as A, read as
reported in Table A2. Suppose now that algorithm P
predicts the championship table as in Table A2, labeled
as P. The first step in evaluating the difference between
standings A and P is the derivation of the correspond-
ing permutations sA and sP, and then the computation
of the sum of all displacements sA� sP. As shown in
the last row of Table A2, this reads as:

D(A, P) =
X20

i = 1

jsA(i)� sP(i)j = 38 ,

thus the final normalization provides the value of the
distance d:

d(A, P) = D(A, P) � 1

º n2

2 ß
= 38 � 1

202

2

=
38

200
= 0:19 ,

which is a small number, indicating a good similarity
between standings A and P, quite distant from the ran-
dom value 0:�6.

(2) In the second case study, we compare the actual
A and the predicted P final standings of the South
American qualifiers for the 2010 FIFA World Cup,
whose competing teams are listed in Table A3. Fol-
lowing the same approach of case (1), we build the
analogous Table A4. Here, the absolute total displace-
ment is D(A, P) = 14, apparently much smaller than in
case (1), but the normalized distance d(A, P) results
[14/(102/2)] = 0.28, showing instead a worse perfor-
mance of the predictive algorithm P in case (2) com-
pared to case (1).

Table A3. Set T of teams playing in the South American
qualifiers for the 2010 FIFA World Cup

Index Team name Index Team name

t1 Argentina t6 Ecuador
t2 Bolivia t7 Paraguay
t3 Brazil t8 Peru
t4 Chile t9 Uruguay
t5 Colombia t10 Venezuela

Table A4. Actual (A) and predicted (P) final table of the
South American qualifiers for the 2010 FIFA World Cup

Position A P T Team sA sP jsA� sPj

1 Brazil Argentina t1 Argentina 4 1 3
2 Chile Brazil t2 Bolivia 9 9 0
3 Paraguay Uruguay t3 Brazil 1 2 1
4 Argentina Chile t4 Chile 2 4 2
5 Uruguay Colombia t5 Colombia 7 5 2
6 Ecuador Paraguay t6 Ecuador 6 7 1
7 Colombia Ecuador t7 Paraguay 3 6 3
8 Venezuela Venezuela t8 Peru 10 10 0
9 Bolivia Bolivia t9 Uruguay 5 3 2

10 Peru Peru t10 Venezuela 8 8 0

D(A, P) = +10
i = 1jsA(i)� sP(i)j = 14.

The corresponding permutations sA and sP are computed with respect
to the set of teams T. In the last column, the absolute displacement
jsA� sPj between A and P is reported for the corresponding team zi,
and its total is indicated in the last row.
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