
IBM Quantum Computing

Federico Mattei IBM Quantum Ambassador

A path towards quantum advantage

"IBM's point of view and goal is a computational quantum advantage, where a computational task of business or scientific relevance can be performed more **efficiently**, cost-effectively, or accurately using a quantum computer than with classical computations alone."

Performance = Scale Number of gubits 433 qubit + Quality **Circuit fidelity** 512 QV + Speed Circuit execution speed 15.700 CLOPS

Qiskit – Open-Source SDK

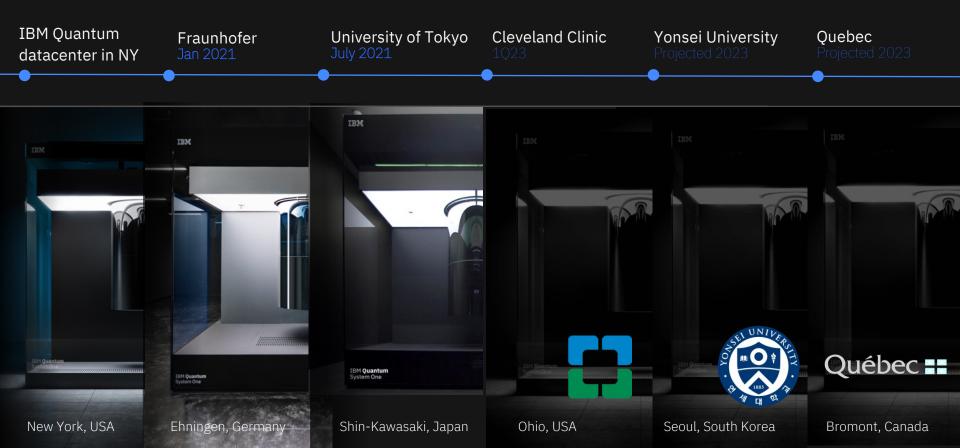
High level applications		Low level applications	🕞 Qiskit							
Qiskit Nature	Qiskit Finance	Qiskit Metal								
Qiskit Optimization	Qiskit Machine Learning	Qiskit Dynamics	Qiskit Experiments							
Core Capabilities										
Qiskit Terra										
Simulator		Hardware providers								
Qiskit Aer		IBM AQT	IonQ							

Development Roadmap

IBM Quantum

	2019 🤡	2020 🤡	2021 🥝	2022 🥝	2023	2024	2025	Beyond 2026
	Run quantum circuits on the IBM cloud	Demonstrate and prototype quantum algorithms and applications	Run quantum programs 100x faster with Qiskit Runtime	Bring dynamic circuits to Qiskit Runtime to unlock more computations	Enhancing applications with elastic computing and parallelization of Qiskit Runtime	Improve accuracy of Qiskit Runtime with scalable error mitigation	Scale quantum applica- tions with circuit knitting toolbox controlling Qiskit Runtime	Increase accuracy and speed of quantum workflows with integration of error correction into Qiskit Runtime
Model Developers					Prototype quantum software applications		Quantum software applications	
							Machine learning Natural	science Optimization
Algorithm Developers		Quantum algorithm and application modules Machine learning Natural science Optimization		Ø	Quantum Serverless			
Developers						Intelligent orchestration	Circuit Knitting Toolbox	Circuit libraries
Kernel Developers	Circuits	\bigcirc	Qiskit Runtime					
Developers				Dynamic circuits 🔗	Threaded primitives 🕹	Error suppression and mitig	ation	Error correction
System Modularity	Falcon 27 qubits	Hummingbird 🔗 65 qubits	Eagle 🔗 127 qubits	Osprey 🔗 433 qubits	Condor 1,121 qubits	Flamingo 1,386+ qubits	Kookaburra 4,158+ qubits	Scaling to 10K-100K qubits with classical
								and quantum communication
					Heron 🍪 133 qubits x p	Crossbill 👌		

IBM **Quantum** – On the cloud since May 2016


Over 500,000 registered users

- More than 25 quantum computing systems on the IBM Cloud, and written over
- 2000+ scientific and research papers.
- IBM Quantum Network members worldwide > 220 Worldwide

Strategic partnerships to accelerate regional quantum ecosystems

IBM **Quantum**

Mercedes-Benz

Quantum Computing for Materials Discovery and Manufacturing Optimization

Mercedes-Benz and IBM have recently published a series of papers demonstrating progress toward using quantum computers to model material systems including Lithiumsulfur that are relevant to advancing the performance of batteries. The teams have also demonstrated applications in manufacturing defect analysis and product recommendation.

"Developing and perfecting these hypothetical batteries could unlock a billion-dollar opportunity."

Benjamin Boeser

[Former] Director of Innovation Management, Silicon Valley at Mercedes-Benz R&D North America

ExxonMobil

IBM Quantum

Quantum Computing as a Tool for Chemistry and Engineering

Working together, ExxonMobil and IBM recently demonstrated advancements in using quantum computers to accurately calculate thermodynamic observables, demonstrating how quantum can be the next generation tool for chemists and chemical engineers developing advanced energy solutions. "We know in our bones that there are huge global challenges that we will tackle in the foreseeable future. When quantum computing scales to become utterly disruptive, we'll be ready."

Dr. Vijay Swarup ExxonMobil Vice President of Research and Development

ExxonMobil

Maritime Routing's Mind-Boggling Math

In 2021 more than 500 LNG (liquified natural gas) ships are used to transport critical fuel supplies across the oceans. Together, they make thousands of journeys per year to destination ports where the LNG is deployed to power critical infrastructure.

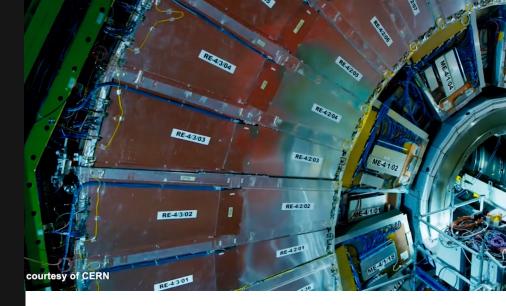
Finding optimal routes for a fleet of such ships can be a mind-bendingly complex optimization problem.

Quantum computers take a new approach to addressing this sort of complexity, with the potential to find solutions that classical supercomputer alone cannot handle. Industry leaders like Exxon are getting involved now to explore how blending classical and quantum computing techniques might solve big, complex, pressing global challenges.

JP Morgan Chase

Quantum Computing for the Financial Services Industry

Recently, JPMC and IBM used Quantum Amplitude Estimation, a Monte Carlo-like sampling algorithm, to compute European option pricing, pricing path depend options, showing a quadratic speed-up versus a classical Monte Carlo approach.


European derivative pricing on a Quantum computer implements the Black-Scholes model using a Quantum Machine Learning Algorithm, namely a quantum Generative Adversarial Network (qGAN). The qGAN utility loads the log-normal probability distribution and models the spot price of an asset underlying a European call option.

The resulting model can then be integrated into a Quantum Amplitude Estimation based algorithm to evaluate the expected payoff.

CERN

Quantum Machine Learning to understand what sews the universe together

CERN's partnership with IBM Quantum seeks new ways of finding patterns in data of the Large Hadron Collider. A recent collaboration with IBM scientists involves the detection and analysis of the Higgs boson, a recently discovered particle that helps explain the origin of mass. Sifting through raw data to find occurrences of Higgs behavior is a knotty problem that stretches classical computers to their limit.

"Quantum computing may play a significant role in (...) exploring the many open questions related to issues such as dark matter, dark energy, (...) and more."

Alberto Di Meglio Head of CERN openlab

Mitsubishi Chemical, JSR and Keio University

Exploring new forms of light with Quantum Computing

A Japanese research partnership comprising corporate teams from industrial chemists Mitsubishi Chemical and JSR Corporation, and academics from Keio University, have joined the IBM Quantum Network. Their mission is to collaborate with IBM scientists to create a new breed of disruptively efficient OLED materials flexible, scalable and able to produce more (and more visually appealing) light with far less energy.

IBM Quantum

© Copyright IBM Corporation 2022. All rights reserved.

The information contained in these materials is provided for informational purposes only and is provided AS IS without warranty of any kind, express or implied. Any statement of direction represents IBM's current intent, is subject to change or withdrawal, and represent only goals and objectives. IBM, the IBM logo, and <u>ibm.com</u> are trademarks of IBM Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available at Copyright and trademark information.